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Abstract 

The propagation of a zero rest-mass test field of arbitrary spin s > 1 through curved 
space-time is found to be subject to strong constraints. A null test field is shown to be 
possible only in a restricted class of spaces previously introduced by Kundt and Thompson. 
This result is in fact a simultaneous generalization of the theorems of Robinson and of 
Goldberg and Sachs. For test fields of spin-2 in vacuum spaces, solutions of the propaga- 
tion equation are restricted, save in a few exceptional cases, to constant multiples of the 
Weyl spinor. The exceptional cases are discussed, and appear to be physically un- 
interesting. 

1. Introduction 

The propagat ion equation for  a zero rest-mass field o f  arbitrary spin s > 0 
in a curved space time is (Penrose, 1965) 

VaX ~aB . . . . .  M = 0 (1.1) 

where q~AB . . . . .  M is a totally symmetric spinor with 2s indices. The symbol 
V Ax indicates covariant  differentiation. Included in this formalism are the 
familiar Weyl neutrino field (s =-lz), electromagnetic field ( s =  1), and 
gravitational field (s = 2). In  the latter two cases equation (1.1) gives the 
spinor forms o f  Maxwell 's equations and the vacuum Bianchi identities, 
respectively. 

The concept  o f  a test electromagnetic field is a familiar one in general 
relativity (Robinson,  1961). Such a field satisfies the source-free Maxwell 's 
equations but  does not  contribute through its stress-energy tensor to the 
curvature o f  space. The above formalism clearly allows a generalization to 
the concept  o f  a test spin-s field. Indeed, as no method exists for  constructing 
an energy stress tensor for fields o f  spin s > 1, such fields must  necessarily 
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be regarded as test fields. The difficulties encountered with such fields in 
general relativity appears, moreover, in the existence of further constraint 
equations which any such field must satisfy (Buchdahl, 1958, 1962; 
Penrose, 1967), making impossible the proper specification of the null 
initial value problem. In fact, the very existence of any solution at all of 
equation (1.1) for s > 1 places a considerable restriction on the geometry of 
the underlying space. 

In Section 2 we study the nature of this restriction in the case that 
equation (1.1) has a spin-s solution of null type. The existence of such 
solutions is shown to be equivalent both to the existence of a shear-free null 
geodesic congruence of rays and to the condition that the underlying space 
be algebraically special. In this way, we generalize simultaneously the 
theorems of Robinson (1961) and of Goldberg & Sachs (1962). Our theorem 
proves to be a new formulation of the generalization of the latter theorem 
due to Kundt & Thompson (1962). 

The remainder of the paper concerns the existence of solutions (not 
necessarily null) of the spin-2 equation. In algebraically special vacuum 
spaces of type II and D the only solutions of the equation turn out to be 
constant multiples of the Weyl spinor itself and null-type solutions propagat- 
ing along the repeated principal null directions. In algebraically general 
vacuum spaces (type I), we show that in 'almost every' case the only solu- 
tions are constant multiples of the Weyl spinor. The exceptional cases are 
also discussed, and it is shown that at most two independent solutions of 
the spin-2 equation can exist. This theorem is especially interesting, as it 
indicates that in a physically interesting situation the Bianchi identities 
uniquely determine the gravitational field (Weyl tensor) to within multipli- 
cation by a constant. This appears to be a kind of curved space generaliza- 
tion of a result in the linearized theory that, for bounded sources, if interest 
is restricted to retarded solutions alone then solving the Bianchi identities 
is equivalent to solving the linearized Einstein field equations (Szekeres, 
1971). It would appear that the word 'retarded' can be omitted in the full 
theory, since 'advanced' solutions of the Bianchiidentities cannot exist at all 
except in very restrictive circumstances. Yet another interpretation of this 
result is to say that the only zero rest-mass spin-2 field allowed in nature is 
gravity itself. 

2. The Generalized Robinson Theorem 

A spin-s field q~A~ ..... M is said to be of null type if it may be written in the 
form 

GAB .... .  M = Boa OB... OM (~ # 0) 

for some 2-spinor field oa. Equation (1.1) then takes the form 

(v Ax ~)  oA o . . . .  oM + q)o~ oc . . .  oM(v Ax oA 

+ ~o~(V Ax oB) oc . . .  o~ + . . .  + ~o,~ o , . . .  (V A~ oM) = 0 (2.1) 
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Introducing a second spinor field ,a satisfying 

OA ~A= I 

so that o A, d together make up a basis for spin space, and contracting (2.1) 
first with d ,c . . . . .  & and then with o B d , . . . ,  ,M one has (for s > 1) 

~ = 0 (2 .2)  

~rgi = 0 (2.3) 

D #  = (p - 2 s 0 0  (2.4) 

~r = (T - 2 s 3 )  ~ (2.5)  

where ~r a, p, r ,  E and/3 are the standard spin coefficient symbols (Newman & 
Penrose, 1962) formed from the dyad o a, ~a (see Appendix). Thus, if a 
null-t3~0e solution of  equation (1.1)exists, then 

K ~ O ' ~ 0  

i.e. o a, or more particularly the null vector field l # which corresponds to 
OA 6~, is geodesic and shear-free, 

Conversely let us suppose there exists a geodesic shear-free null 
congruence, x = c~ = 0. We want to find under what conditions it is possible 
to integrate equations (2.4) and (2.5). Choosing a coordinate system such 
that 

I~ = 34 ~, D = O/Ox 4, 

there clearly exists a solution ~ = g}o of  equation (2.4). Any other solution 
of  (2.4) is given by q} = Aq~o, where A is an arbitrary function of  x ~ 
( i=  1,2,3). 

Define 
Y = 3 ~  - (,r - 2aft) qb (2.6) 

Then applying the operator D to this equation, using (2.4) and the com- 
mutator and field equations given in the Appendix, the following equation 
e m e r g e s  f o r  o r 

D J =  (p + f i  + (1 - 2 s ) E  - ~)S+ ( 2 s -  2)hu, # (2.7) 

It is, however, always possible to pick q~ such that d =  0 on the initial 
hypersurface x 4 = 0 for this amounts simply to solving a single complex 
partial differential equation within this hypersurface 

~0 3 log A +d o  --- 0 

where do is the value o l d  obtained from (2.6) on putting ~ = #o. 
I ra  = 1, equation (2.7) is homogeneous in Yand if J =  0 initially, it must 

remain zero. Hence, # satisfies both (2.4) and (2.5). This proves Robinson's 
original theorem. 

When s > 1, equation (2.7) is homogeneous if and only if W1 = 0, i.e. if 
8 
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and only if the space is algebraically special, since ~rs 0 = 0 follows automatic- 
ally from K = ~ = 0 (see Appendix). We have then the following: 

Generalized Robinson Theorem: Any two of  the following implies the 
third 

(8) 
(3,) 

There exists a geodesic shear-J?ee congruence, 
The Weyl tensor is algebraically special, 
There exists a null-type solution of the spin-s rest-mass zero 
equation (1.1)for every s > 1. 

In fact the theorem we have proved is rather stronger than this. If  (3,') is 
the condition 

(3") There exists a null-type solution of the spin-s rest-mass zero 
equation (1)for some s > 1, 

we have shown that 
(3,') (/3) (3,) 

Thus the existence of a null-type solution of equation (1.1) for some s > 1 
is enough to ensure the validity of the Goldberg-Sachs theorem (Goldberg & 
Sachs, 1962; Newman & Penrose, 1962). The class of spaces in which the 
Goldberg-Sachs theorem holds has been determined by Kundt & Thompson 
(1962). Our theorem gives a new characterization of these spaces as the 
class of  spaces in which there exists a null-type solution of equation (1.1) 
for some s > !. 

3. The Constraint Equation 

Given a spin-s (s > 3/2) zero rest-mass field O~B ... . .  M satisfying equation 
(1.1), the Ricci identity may be used (Penrose, 1967) to deduce an algebraic 
identity 

yfABC(D~)E . . . . .  M)ABC = 0 (31) 

This equation places strong constraints on the possible values of OAB .... .  M" 
In the case of a spin-2 field OaBCD equation (3.1) takes the following form 
when written out in terms of a spin basis OA, *A (see Appendix): 

71o03 - 3711 02 + 37t2 O, - ~ 3 0 o  = 0 (3.1a) 

~Y/O ~14 --  2~TJt ~)3 -}- 2~-/3 01  - -  ~-/4 I~0 = 0 O . l b )  

Yt I 0 4 - -  3t/J2 O 3 + 3t/-t3 O2 --  tI-I4 0 , = 0  ( 3 . 1 0  

We consider these relations firstly in the case that the metric is algebraically 
special. This means that there exists a repeated principal spinor which may 
be taken to be oa, so that ~o = W~ = 0. Separate cases arise corresponding 
to the different possible Petrov types. 

Petrov type IL The spinor ~a may be chosen so that W 2 # 0, 713 = 0, 
7/4 # 0. Equations (3.1a)-(3.1c) give 
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(~) ABCD = O~u "q- AT(l) v ABCD 
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(3.2) 

i.e. 

where 

~ A B C D  = OtlIYABCD "q- A T ( I )  -t- AT(2) v A B e D  ~ "ABCD 

N]~CD = yoA oB Oc oo 

Petrov type 111. W2 = 0, W 3 ~ 0. Equations (3.1a)-(3.1c) give 

~o = q~l = ~2 = 0 
i.e. cbaBco is of  type III or N. 

Petrov type N. Tz  = Ws = 0. Equations (3.1 a)-(3.1 c) give 

~o = 41 = 0 

i.e. ~anCD is algebraically special. 
In types II and D, it may be shown that if 7tancD satisfies the vacuum 

Bianchi identities, 
V A ~  ~JABCO = 0 (3.4) 

then ~ must be a constant [a space satisfying the condition (3.4) has previously 
been termed a C-space by one of  us (Szekeres, 1963)]. For, substituting (3.2) 
and (3.3) into equation (1.1) give, respectively, 

�9 YTD~" AT(I)  0 = tIIAnCD V DY ~ 2V v ~t, ABCD 

and 
~-7 D !~ A]'(2) X'7D~ M ( i )  + - -  " ' A n C D  0 = u V D~( O~ "~- v •',,4BCD 

Contracting these equations first with o A o n tc and then with o A ~B ~C and 
using the shear-free geodesic condition 

OaoD VDe oa = 0  ~ ~c=a=O 

which follows immediately from (3.4), yields 

ooV De~ = ~DVDe~= 0 ~ V oe~ = 0 

and 
VD!? A/"(1) _ k'TDI? AT(2) - -  (I 

�9 'ABCD - -  - -  .tVABCD - -  w 

Hence a is a constant, and the null fields N (1) and N (2) satisfy the rest-mass 
zero spin-2 equation. (To show that N (2) satisfies the equation in type D it 
is necessary to also use the fact that ~A is shear-free and geodesic.) 

(3.3) 

(1) 
N ~ B C D  = f l o A  o B  Oc OD 

and ~ and fl are scalar functions. 

Petrov type D. ~ may be chosen so that W2 ~ 0, W3 = T4 = 0. Equations 
(3.1a)-(3.1c) give 
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Thus in a C-space 4agCD is uniquely determined by Wa~co to within a 
constant factor and null-type fields propagating along the repeated null 
direction(s). The latter always exist by our generalized Robinson theorem. 

When WABCD is of type III, 4a~co must also be of type III, and if kgABCD is 
of type N then 4ABe, must be algebraically special. It is not possible to 
obtain any further uniqueness conditions on 4ABCD in these cases. 

4. The Algebraically General Case 

If the metric is algebraically general, oa and ~A could be chosen to be 
principal spinors so that 7Io = 7t4 = 0, 7t~ r 0, W3 ~ 0 (called a principal 
dyad). To investigate equations (3. la)-(3.1 c) it will, however, turn out more 
useful to adopt another dyad having the property that 

~1 = ~ 3  =0,  ~g0 # 0, 7~4~0 (4.1) 

The existence of such a dyad is easily shown by applying the following 
unimodular transformation to any principal dyad OA, ~a: 

o l  = W3) '/2 o~ + (,/,)~/2 bA 
ha' = --'~(W,)-U20a + ~7t3) -1/2 bA (4.2) 

It is further possible by a scaling transformation 
OA t/ ~ aOAt9 bAtt ~ a - 1  ba t 

to achieve that 
e o = ~ , ~ 0  (4.3) 

(if either W0 or 5u4 vanish the metric is clearly algebraically special). A dyad 
satisfying (4.1) and (4.3) will be called an interaction dyad [such dyads 
appear naturally in the collisional interaction of plane waves (Szekeres, 
1972)]. There will in general be six different interaction dyads, corresponding 
to six different choices of principal dyad on which to perform the uni- 
modular transformation (4.2). An exceptional case occurs when 

in which case the metric is algebraically special (type D) having repeated 
principal spinors oa•  ta (for 7t0 = +37t2), OA • iba (for 7to =--3W2). 
There is then a continuous one-parameter family of interaction dyads. 

In an interaction dyad equations (3.1 a)-(3.Ic) read 

W0 43 + 3712 41 = 0 

- 3 ~ 2  43  - ~g0 41 = 0 

~ o ( 4 4  - 40)  = 0 

Hence in the algebraically general case (~rl o ~ •165 it follows that 

41 = 43 = 0, 4o = 44 

and an interaction dyad for 7rABCD is also an interaction dyad for 4A~CD- 
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The spin-2 equations (or vacuum Bianchi identities) read, in an interaction 
dyad, 

Using 

D 4  o = - (4e  - p) 4 o - 3A~ 2 

A@ o = (4y -- ~)@o + 3~42 

~ 4  o = -(4/3 - ~') 4 o -- 3v@2 

840 = (4~ - / 3 )  40 + 3K42 

D42  = - ~ 4  o + 3p42 

A42 = a ~  o - 3/zq~ 2 

342 = - v 4  o + 3~'42 

~42 = K ~  o - -  3~r~ 2 

these equations may be written 

42. . = At, 4 o + 3Bt, 42 (4.4a) 

4o,t, = (Bt, + C,)  4 0 + 3At, 42 (4.4b) 
where 

A~ = - L ~  + ~I~ + v r~  - Km u 

B~ = pnt, - tzl t, - r ~ t ,  + rrmt, 

C,  = -4ent,  + 47I u + 4flrfi, - 4~m u 

The integrability conditions for  (4.4a) and (4.4b) are 

4o,cuvl ----- q02,tuvl = 0 
i.e. 

0 = 342  BtU,. ~ + q0o(Att`,vl + A t u ( C .  1 - 2Bvj)) (4.5a) 

0 = 3q~2(Atu,~ ~ + Atu(2B~ ~ - C.~)) + 4o(Br~ , .  ~ + Ctu,~) .  (4.5b) 

In  vacuo,  or in a C-space, this pair  o f  linear equations for  40, 42 must admit  
a solution since the spin-2 equation has a non-trivial solution in the Weyl 
spinor. On the other hand 

qbo = Au162 42 = AYt2 (.4 arbitrary) (4.6) 

will be the only possible solutions of  (4.5a) and (4.5b) unless the matrix o f  
coefficients vanishes identically, i.e. unless 

Bt~,~ = Ctu,~ = At~,v~ = 0 (4.7a) 
and 

Att`C~j = 2At~,B~ 1 (4.7b) 

Substituting (4.6) into (4.4a) and (4.4b), and using the fact that  q~o = 7to, 
42 = 7tz satisfy these equations,  implies at once that  

A . u = 0  

i.e. 
A = const. 
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Hence, if (4.7a) and (4.7b) are not identically satisfied, the only solution 
of  the rest-mass zero spin-2 equation is the Weyl spinor itself or constant 
multiples of  it. 

In the exceptional case that (4.7a) and (4.7b) are satisfied, there exist 
complex scalar functions a, b, c such that 

At, = am Bt, = b.m Cu = e,u 

with 
c - 2b = f ( a )  

Two cases may be distinguished: 

(i) a # O, b # b(a). 

Equations (4.4a) and (4.4b) imply fllat 

and 

r = 40(a,  b), ~ 5  = 42(a ,  b) 

042 /0a  = 40 ,  042/0b = 342 

04o/Oa = 3~b5 + f'(a) (Po, 04olOb = 340 

(ii) b = b(a), c = c(a). 

A similar argument shows that 

4 2  = r 

and 

4o = 4o(a) 

42' = q~o + 3b' 45 

~b o' = ~bo(b' + e') + 342 

a pair of  ordinary differential equations having a general solution of  the 
form 

(40 ,  42 )  = e1(4(o " ,  ,~(1)~ • ~ ra~c2~ ,~c5)~ "~2  J T t ' 2 k ' ~ 0  ~x"  0 j ,  

Thus in each ease, when equations (4.7a) and (4.7b) hold there are at most 
two independent solutions of  the spin-2 rest-mass zero equation. 

_ (1 )  (2 )  
4 anco --  el 4 A~CD + C5 4 anCD 

Hence 
~b2=F(a)e3b, qgo=F'(a)e3b ( '=d/da) 

where F(a) satisfies the linear second-order ordinary differential equation 

F " - f ' F ' - 3 F = 0  

This equation has two independent solutions Fl(a), F2(a), and 

42 --- e3b(cl F1(a) + e2F2(a)) 

4o = e3O(cl F((a) + c2 F2'(a)) 

where c~ and c2 are arbitrary constants. 
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One of these, say ~ABCD,a~m may be taken equal to the Weyl spinor ~,~8co 
itself. 

Theorem: In an algebraically general C-space, the Bianchi identities 
either have a unique solution to within constant multiples, or its solutions 
are linear combinations o f  at most two independent solutions. 

The strongest possible statement of this theorem in algebraically special 
cases has been made in the previous section. In that case it was always 
possible to add null type solutions in accordance with the generalized 
Robinson theorem. The theorem, as it stands may be extended to all non- 
vacuum cases but then the Bianchi identities and the spin-2 equation are not 
identical in general. The proof is similar, inhomogeneous terms constructed 
from Ricci tensor components appearing on the right-hand sides of equa- 
tions (4.4a) and (4.4b). 

In conclusion, it would be of interest to know whether spaces satisfying 
the exceptional conditions (4.7a) and (4.7b) exist at all. 

Consider the metric 

ds 2 = 2exp [�89 2 - 1) U] dudv - 2(exp [(1 - a) U]dx  2 

+ exp [(1 + a) U] dy 2} 

where 
U = log (u + v) 

This is a vacuum metric, one of a class of metrics derived by Landau & 
Lifschitz (1962), displayed here in null coordinates. An interaction tetrad is 

I~ = {exp [�88 - a 2) UI, 0, 0, 0} 

n.  = {0, exp [�88 - a 2) U], 0, 0} 

m" = �89 0, exp [�89 - 1) U], iexp [-�89 + t) U]} 

in which the Weyl tensor has components 

7t0 = ~4 - a(1 4 a2) exp [-~(3 + a 2) UI 

= - a l P ' 2 ,  1 / I  1 = 1 / f  3 = 0 

Thus the metric is algebraically general except when a = 0 or 4-3 (type D), 
or a = +1 (fiat space). The vectors A u, Bu, C u may be calculated to be 

A u = �89 u, B, = -�89 m C~, = �89 - a 2) U,t , 

Hence, conditions (4.7a) and (4.7b) are satisfied and the metric is of the 
exceptional type. The spin-2 rest-mass zero equation may be explicitly 
integrated, giving two independent solutions, one the Weyl tensor having 
components given above, the other having components 

ab 
q~0 = q~4 = b = const., q~2 - 3 
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Most physically interesting metrics cannot, however, be expected to 
satisfy the very restrictive conditions (4.7a) and (4.7b), and a unique solution 
of  the Bianchi identities is generally to be expected. 

Appendix 

A pair of  spinors o a, ~a satisfying 

Oa ~a = 1 *a~ = oa ~ -- *a on 

constitutes a basis (dyad) for spinors. Newman & Penrose (1962) introduced 
the generic symbol ~ a  (a = 0, I) 

~o" = o A, ~( '  = <'  

and defined 

where 

The components of T',~a are the spin coefficients, 

-r'oo0b = ~: -r'01 ob = ~ / ' n o b  --- ~- 

/'oolb = p  T'o118 = ~  /'lll~-----A 

T'oooi = cr /'o,oi =/3 /'1,oi = /z  

Pooli =~" -r'oni =~ '  F l l l i  = v  

In addition, intrinsic derivatives D, A, 8 and ~ are defined by 

Dq~ = o a o 0 Vat) = l~ Vu 

Aft  = ~a # V a ,  = n" V .  r 

a~ = o A ~ Vat) = rn~' V .  (o 
8~ = ~" a ~ V ~ = m" V . 

l ~, n", m u, ~u being the null tetrad associated with the dyad o a, ~a. 
The spinor equivalent of  the Riemann tensor Ru.po decomposes as 

follows: 
-Ra~nt~cooh = 7taBcv e~# ~oh + CaB eCD ~ ' t ~ h  

+ 2A(Eac ~nD E~ %h + can Eco ~lZh ~a)  

can ~co~P eah + eCD q~ aneh et~p 

where Wanco = ~'t~anco) is determined uniquely from the Weyl tensor and 
Cbane~ and A from the Ricei tensor. The dyad components of the Weyl 
spinor hrtaBco are denoted 

~ o  ='eoooo, e ~  = ~ooo,,  'e~ = eoo~,,  

where 
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A m o n g  the field equations (Ricci identities) only the following are o f  
relevance to this paper. They are given for  the case ~c = (r = 0 which is 
appropriate  to Section 2. 

V0=0 
D~- = (~" + ~) p + (e - ~) ~" + ~ + ~o i  

~ e = ~ ( ~ + ~ ) + ( ~ - ~ ) ~ -  ~q + ' 0 1  
where 

q~ol = ~ Anco oa on SC ~~ 

The commuta to r  o f  the derivatives 3 and D, also used in Section 2, is 
(again with ~c = ~r = 0) 

(~D - D~) $ = (~ +/~ - ~) D$  - (~ + ,  - ~) ~. 
The vacuum Bianchi identities 

VAD ~anco = 0 

are 
D ~ ,  

DT3 

~ o  

- ~h% = -3 ,~Wz + ( 2 .  + 4p) 7tt - (4c~ - ~v) 7" o 

- ~ %  = - 2 ~ %  + sp~e~ - (2~, - 2 . )  % - m~o 

- ~7~2 = - ~ 4  - ( 2 .  - 2p) % + 3.7"2 - z a %  

- ~ 3  = - ( 4 .  - p) 7~4 + ( 4 .  + 2 e )  N3 - 3/~tIt2 

_ ~u~  = + ( 4 ~ , -  , ) %  - ( 4 .  + 2/3) ~vt + 3~7'2 

- ~ e ~  = ~Vo + (2~, - 2~,) ~ - s . ~  + 2 ~  

- ~ v 3  = 2 ~ ,  - 3 . ~  + (2/3 - 2 . ) , e ~  + ~ 7 . ,  

- ~ ,  = 3 ~ %  - (2~, + 4 , )  7.~ + (4/3 - ~ ) w ,  
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